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Background

* H-mode
» Better power confinement for plasmas

» Edge transport barrier and pedestal
region

* ELMs \%)/

» Periodic MHD events at H-mode pedestal; WAS 13588
» Damage to PFC;

> Affect confinement; o Eﬂi crash
— ¥ I."EED‘&'H’}'

* Peeling-ballooning model

» Driven by combination of high pressure E—'
gradient and current

» Different linear instabilities, different
types of ELMs.

pf}{ed
P.B. Snyder, et.al Nucl. Fusion 47 (2007) 961



Landau fluid model can fill the gap

between hot and

cold boundary plasma

1 Boundary region
|* Temperature: low

=0l

* Temperature: high
* Collision: weak

I Collision: strong
|* Model: two fluid

Core region i 5

* Model: gyro kinetic

‘ Landau closure ‘

\

:

‘Two fluid model ‘

—

v Two fluid model for ideal peeling-ballooning mode
v’ Using non-local transport closure to simulate kinetic
effect on hot, collisionless region

Landau fluid model




6-field includes the effect of thermal
conductivity and temperature profile

T Vodel | arables | by

3-field w, Ay, P Peeling-ballooning model
6-field o, Ay, Vy, Ty, T +Thermal conductivity
* 3-field:
* Only peeling-ballooning model
* 6-field:

* Thermal conductivity
» Landau closure: collisionless wave-particle resonances
» Flux limited heat flux: collisional transport and flux streaming

* Effect of temperature profile 2 n; = L,, /Lt scan



o-field Landau fluid model with

narallel heat flux
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Different balance pressure

orofile

e Simulations are based on the shifted circular
cross-section toroidal equilibria (com18 den6)
generated by the TOQ code*.
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* X.Q. Xu and R.H. Cohen, Contrib. Plasma Phys. 38, 158 (1998)
e Umansky, Xu, Dudson, et al.,, Comp. Phys. Comm. V. 180, 887-903 (2008).
e Dudson, Umansky, Xu et al., Comp. Phys. Comm. V.180 (2009) 1467.



Classical thermal conductivities

and Landau damping closure

Landau damping closure classical thermal conductivities
o : _
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v’ Classical heat flux

v Non-local thermal transport

Flux streaming




Landau closure has more damping effect on

linear growth rate, but not very strong

* Both Landau closure 020 [+
and flux limited thermal | e o
conductivity has o1s] o —Snodleen
stabilizing effect on _
peeling-ballooning S oxol
modes: T

* Landau closure has 005 |
stronger stabilizing :
effECt; 0.00 =50 a0 6;10' s 1000 120

* Thermal conductivity —
doesn’t change the Why the stabilizing effect from
unstable island of local/nonlocal parallel thermal

modes. conductive is not that strong?



Landau Damping and flux limited conductivity
should have no effect on rational surface

* For ideal ballooning mode, dispersion relation is

* Parallel conductivity has a stabilizing effect on peeling
ballooning mode

 Parallel conductivity should have no effect on rational
surface which k; = 0 = Radial structure



Our simulations show consistent radial

structure with theoretic expectation!

e Radial mode structure 1.0
. . . — no diffusion |
 Without parallel diffusion: Zz
smooth; >
* With Landau damping for flux 02
limited thermal conductivity: — — o
peaked at rational surface. 58, n—30 68, n—30
1.0 ‘ T AN T -
Rational Irrational 08 \: LN :‘/
surface surface 05 o N
Instability Strong Weak " 04 EEREREEEEN
. 0.0 — landau closure | | (b)
Parallel damping Weak Strong ' flux limited
0.0 0.80 - I0.I85I - IOI.QO

* The mismatch between
instability and parallel
diffusion reduces the
damping effect on peeling
ballooning modes.

0.80 0.85 0.90



Landau damping leads to smaller ELM size in

nonlinear simulations than flux l[imited expression
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* Nonlinear result is similar as linear result; whyurbul 1
* Landau damping closure has more Turbulence
damping effect on the turbulence o icransport §
transport phase of elm crash; [
* Elm size with Landau closure is smaller | L
. . . . 0.6 0.8 1.0
than Elm size with flux limited heat flux; Voo
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Effect on rational surface during

linear phase

e Electron temperature
contour of nonlinear

L 1.2
andaut0 00 run
closure
e Parallel heat flux has no

i effect on rational
surface
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* Trace of rational surface
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Different L,,/L,

» Keep the same pressure profile, change density and
temperature;

e L,,/L; scan:
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Damping effect is strong when L,,/Ly 1S

large

* Keep pressure profile

and local density and 0.20 ]
temperature profile G\//c ° ;
1 0.19 | .
f|Xed, change Ln/LT Hﬁgﬁﬁtg?sure
- o diffusion

e L,/Ly has small effect o1
on peeling ballooning £ |
mode 017 | ——

* Parallel conductivity 016 |
has small effect when : o 5 o

L, /Lt is small T T e T S



L, /Ly has little effect on growth rate spectrum

* L, /Lt has small effect
on the growth rate and
spectrum;

0.20 B [ L | (L |‘ ztizi

* Small effect from F
diamagnetic term < 010
because of different
density gradient profile.




Spreading Is strong when L, /L; Is large

* L, /Lt has small effect on
initial crash phase.

* Speed in spreading phase is
large when L,, /Lt is large.

* When L, /L is small, result
with Landau closure has
more damping effect on
ELM size. When L, /Ly is
large, ELM size with Landau
closure has faster spreading
speed than flux limited case.

ELM size
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ELM has fast crash phase and slow perturbation

spreading phase

Crash phase Spreading phase

0.05 — — T
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* lon perturbation has N
larger initial crash _oo3p Tl ;
@ o ! E
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lon purturbation has a large initial crash and electron
purturbation only has spreading




Rms component of perturbation
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Dominant mode number changed in different phases

04 —— — T T T ) L e e e e N e e e e
C —n=5 ] i — n=15]
: ~ n=10| 1 - —_n=30]
. —n=15| 1 0.8 (- _
0.3 b —n=20| T
- ——n=25| 1
— n=30 _
- —n=35| ]
o 0.2 —n=40|
01 [ E i
- A' “‘ i ],J,pimvll ‘r :\ ﬁ,\ J{L/\N\A :
0.0 E— Hh . 0 . A ol |
0 800 '8.00 0.05 0.10 0.15 0.20 0.25 0.30

wfw,



Electron has a positive phase shift with phi




ExB drift term in electron temperature

equation cause the spreading

 Drift velocity in electron
equation is similar with
spreading speed

* Drift wave instability cause

the spreading T R

* Dissipation effect, (Landau o
damping, parallel thermal ‘ [
conductivity), destabilize R :
the instability. : :
o g |~

0(Te)
dt

1
By



Larger conductivity leads to the spreading

for electron perturbation

0.030 7
* With larger thermal conductivity,
lon perturbation has same ELM

size as electron perturbation.

0.025 [

0.020 [

0.015 |-
0.010 -

0.005 |-

0_000_H|||||




Thermal force, when coupled with parallel

heat flux, can destabilizes modes

 With Landau closure or

. . . . L2 O o o o o o o o o o e B
flux limited diffusion: - | ' eelandan dlosus
E-8-8w | o diffusion
Thermal force has an —e—sflux limited
15 G- & Oy r for
unstable effect on T o thermal force
modes; o
. _.3 0.10 —
* Without parallel ‘
diffusion: Thermal force | -
has small effect on the - \
. — °
linear growth rate of - . | . | -
0.00 b e b b b

mOdES. 0 10 20 0 30 40 50



Summary

* Parallel conductivity term has stabilize effect on
peeling-ballooning mode and can reduce elm size.

* Landau closure has more damping effect for the
linear growth rate of peeling-ballooning mode.

* Spreading is caused by drift wave instability. Speed
for electron perturbation is determined by ExB drift
velocity which is large when IV'T, is large.

* Different response of ion and electron in nonlinear
ELM simulation is compared. ...
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